TMS320F28335在电网频率测量中的应用
摘要: 本文提出了一种基于TMS320F28335 的频率测量方法, 用于监测电力系统的电能质量。该方法采用DSP 的eCAP 模块和通用定时器对输入信号的上升沿进行捕捉, 通过记录两个上升沿的触发时间得到输入信号的频率。与软件测频方法相比, 其硬件电路简单, 可靠性高、实时性好。理论分析和实验测试表明, 该方法测频精度高, 很好的满足了电能质量监测装置的要求。 0引 言频率是衡量电能质量的重要指标, 也是判断电力系统故障的重要依据。一般情况下, 电力系统的频率会随着负荷的波动而有所变化。在正常情况下电网频率变化缓慢,即使发生系统事故, 在很短的时间内( 如一个工频周期) 电网频率的变化量也是较小的。频率测量若能不断实时地测量电网频率, 所测量的频率误差可减小到很小的程度。
数字频率的测量方法主要有: ( 1) 测量电压波形某一整数周波的时间, 从而计算频率; ( 2) 利用波形识别或曲线拟合技术来估算频率。后一种方法不能很好的抑制谐波分量, 计算量偏大, 要对每一周波都进行一次计算, 将会占用过多的处理器时间, 其不能兼顾计算精度与实时性。
而前者的测量精度受电压过零点的影响较大。
本文提出通过过零检测电路将电网基波整型成方波,用TMS320F28335( DSP) 的捕捉模块对方波上升沿进行捕捉的频率测量方法, 在一定程度上抑制了电压过零点的影响, 有很好的测量精度和实时性。
1通用定时器与捕捉模块
TMS320F28335 是指令周期为6. 67 ns。主频达150 MHz; 高性能的32 位CPU , 单精度浮点运算单元( FPU ) , 采用哈佛流水线结构, 能够快速执行中断响应。 并具有统一的内存管理模式。本文提出的测频方法主要应用TMS320F28335 中的捕获单元( eCAP) 和通用定时器( GPT ) 单元。
1. 1通用定时器
通用定时器是TMS320F28335 常用的PIE 接口, 其核心是计数器, 32 位计数。通用定时器有多种工作模式,以满足不同的需要。每个定时器可以独立工作, 也可以相互同步工作。可以对寄存器事先设置来实现相应的功能。
全局通用定时器控制寄存器GPTCON A ( EVA 中) 和GPT CONB( EVB 中) 规定通用定时器在不同事件中所采取的操作, 并规定它们的计数方向。为了完成测频所需要的功能, 需要设置GPT 的计数寄存器T xCN T、定时器比较寄存器Tx CMPR、定时器周期寄存器Tx PR 以及定时器控制寄存器T xCON ( x = 1, 2, 3, 4) 。
1. 2捕捉模块
eCAP 模块是一个完整的捕捉通道, 能够实现多个时间的捕捉任务, eCAP 单元结构如图1 所示。
图1捕捉单元结构
TMS320F28335 有6 个捕捉单元, 分两组, 每个捕捉单元都有一个专用的捕捉输入引脚, 能够对输入引脚的电平变化做出反应并捕捉电平变化发生的时间。当引脚电平发生变化, 触发事件将被触发: 将指定的通用定时器的计数值压到该捕捉单元的两级FIFO, 当FIFO 的数据个数大于或等于2 时触发捕捉中断请求。中断响应可以进行频率的计算及其相应操作。
2系统硬件电路及其测量原理 2. 1系统的组成
<P> 系统主要由互感器、低通滤波、过零检测、控制处理等模块组成。系统模块如图2 所示。
图2系统硬件结构
在模拟通道的前端通过精密互感器对电网信号进行采集。低通滤波滤除信号的高次谐波, 以避免谐波对过零检测环节的影响, 提高测量精度。过零检测电路由电压比较器MAX474 和电阻等元件组成, 对正弦信号进行整形,得到与电网基波相同频率的方波信号, 提高信号边沿的捕捉精度。过零检测电路对正弦信号的陷波有一定的抑制能力。
2. 2测量原理
采用TMS320F28335 的eCAP1 模块对方波的上升沿进行捕捉, 每次捕捉完上升沿后都对32 位定时器进行置位, 上升捕捉的计数值为N 1。
则除设备开始运行的第一周波之外, 之后的捕捉到的定时器值N 1 与频率f 成比例关系, 即:
( 其中K 为输入信号分频系数)。
在150 MHz 主频的DSP 中, 32 位的定时器溢出的时间接近半分钟, 对电力系统基波进行上述的测量, 其不会溢出。
3测频在DSP 中的实现
3. 1时间预定标器与误差分析
时间预定标器的功能框图如图3 所示。
图3事件预定标器功能
输入的被捕捉信号可以通过预定标器进行频, 或者选择直通工作方式。分频系数由寄存器ECCT L1 的PRESCALE 控制, 可以进行2 到62 偶数次分频。分频有利于提高测量精度, 因为频率测量时计数值越高, 测频的测量精度也就越高。
采用直通方式对50 Hz 的信号进行测频, 计数值大概为3× 106 次。假设对信号进行K 次分频, 则计数值将是K× 3× 106 次。定时器由于计数造成的绝对误差为:
采用时间预定标器对信号分频可以提高测量精度, 但也会降低测量的实时性。对于K 分频, 则需要K 个周波才能得到频率信息, 即此时得到的测量频率是K 个周波之前的频率。采用直通方式造成的绝对误差大约为310- 7 , 完全可以满足电力系统测频的要求。考虑到电力系统频率测量的实时性, 本设计采样直通方式对频率进行测量。
3. 2捕捉单元的处理 输入信号可以由GPIO5、GPIO24、GPIO34 引出, 可选择其中的一个作为输入, 并对相应的寄存器GPXMU Xn 进行设置即可。对ECCT L1 进行设置: 选择直通方式, 不对信号进行, 提高实时性; 使能CAP1 寄存器装载, 使得在捕捉事件发生时装载计数器的计数值; 选择CAP1 为上升沿触发, 并在装载计数器之后重置计数器。
对ECCT L2 进行设置: 设置在捕捉事件1 发生后停止计数, 等待捕捉; 选择单次操作模式。并对中断使能寄存器ECEINT 进行设置, 使能捕捉事件1 作为中断源。
捕捉过程的流程如图4 所示。
图4捕捉过程流程
由于每次读取计数器的计数值之后都对计数器进行重置, 捕捉到的计数值就是与周期对应的值。每个周期都对上升沿进行捕捉并计算频率, 实现了对频率的实时跟踪。
此测频方法可以用于电力系统相位的测量。只需将同一相的电压、电流信号分别作为两个eCA P 的输入信号。采用上述设置方法对两个eCA P 进行设置, 只将其中的一个e CA P 的装载计数器操作之后重置计数器。两个e CAP 捕捉到的计数值的差▽ N 与相位差▽成正比, 即:
实现相位差的测量。
4实验室测试结果
在实验室条件下, 用示波器和基于TMS320F28335电能质量装置对同一含有谐波的信号进行频率测量。频率测量的对比数据如表1, 其中的f OSC 和f DSP 分别是美国泰克T ekt ronix TDS2024B 数字示波器和基于TMS320F28335 电能质量装置所测得的频率值。
由表1 所测的数据可知, 本文提出的测量装置与T ektronix 示波器测频的最大绝对误差为0. 0053 Hz。频率测量结果表明此装置有很高的测频精度。
表1频率测量数据对比
5结束语
本文提出了一种基于TMS320F28335 的测频方法,该方法硬件电路简单, 实时性好。文章还给出将该方法用于相位测量的初步思路。将该方法应用到电能质量监测装置中, 实际运行的结果表明, 该方法可行。
谢谢分享!:D
页:
[1]