Model 2810/2910数字电路结构 Model 2810矢量信号分析仪与Model 2910矢量信号发生器采用图3所示的数字电路结构。设计中繁重的信号调整由DDC、DUC与DSP完成,DSP选用具有最佳性价比的500MHz器件,DDC、DUC是16位160MHz四通道器件,每通道可通过软件编程进行上下转换。动态存储器选用快速、大容量器件。输入到ADC的中频信号频率为100MHz到200MHz,由DSP完成I/Q调制。DAC在信号发生器的RF前端有两个I/Q调制输出,在设计中,FPGA主要用于发送信号并提供部分实时信号如触发信号,而主处理器则用于实现用户接口。
Model 2810/2910软件结构 Model 2810/2910软件结构包括三个基本层:用户接口层、无线电应用与硬件管理层。用户 接口层:由主CPU运行,主要负责用户与前面板或接口的交互;无线电应用与硬件管理层由DSP编码完成,DSP具有专署的内部编程环境。在软件中,通过编码实现两个层的分割,编码的分割有利于提高处理效率。
GSM应用实例
图5给出了GSM应用实例,GSM信号产生和测量具体步骤如下:主CPU接受命令发起、产生GSM信号,命令源自GUI或远控接口命令。描述波形的数据包含在小的文本文件中,文件的内容通过用户接口产生或通过远程接口下载,一旦描述产生它将存储为一个文件,这个文件信息包含了活动的时隙和每个时隙的数据。
而后数据文件传送到DSP,DSP根据无线电应用层获取波形描述数据,产生I/Q波形数据,并备份波形到DRAM中,同时DSP为波形数据设置数据路径:数据将从DRAM传输到DUC再至DAC。在此过程中,FPGA负责控制每个时间的发送。此时DUC上变频到50MHz,而后DAC上变频到400MHz。这些数据在射频前端被信号滤波器整形,最后GSM输出到射频前端。
DSP接收部分:首先,主CPU在前面板或远控接口接收一个GSM测量命令,而后CPU发送测量命令至DSP,DSP设置数据路径,采集测量数据并实现下变频。此时,数据从ADC传输到DDC再至DRAM。最后由DSP完成GSM测量,包括相位误差及频谱等。其中所有测量均采用同一组数据完成,从而减少了测量时间。
通过GSM应用实例,不难发现使用SDR架构的两个关键优势在于:首先,它允许设计人员改变性价比去满足客户需求,即在较低的价格下保证性能水平或在同样的价格下实现性能提升。其次,可极大改善测量时间,包括:装置设置与响应时间、仪器设置时间、信号采集时间及数据处理时间。在理想情况下,客户的测量时间将只受DUT而非测量仪器的限制。