EnergyBench提供若干工具,这些工具可容易低与经济实用的硬件结合使用,以便使用E EM B C开发的标准方法测量典型功耗。不过,除了处理器之外,具体芯片设计和集成到芯片内部的外围模块也是影响芯片功耗的重要因素。虽然许多芯片供应商都会在产品的datasheet中提供功耗参数,但是这些参数往往是不具可比性的。当设计者试图对集成到SoC中的不同处理器进行对比时,如果想要弄清楚处理器的真实功耗是怎样的,将会变得非常困难。这是因为,供应商经常使用典型功耗参数来描述他们的处理器,却很少表明进行这些测量时处理器的工作负载,而这将是决定能量和功率参数的关键因素。
虽然许多芯片供应商都会在产品的datasheet中提供功耗参数,但是这些参数往往是不具可比性的。这是因为,供应商经常使用典型功耗参数来描述他们的处理器,却很少表明进行这些测量时处理器的工作负载。
以前业界通常将关注的焦点放在处理器的性能方面,但是随着E EM B C等组织开发出各种测试基准(诸如面向汽车、消费电子和网络等应用领域的基准测试),我们可以更清楚的了解处理器内部的真实情况。随着功耗问题正逐渐嵌入式应用中的关注焦点,因此在评价处理器时,必须将功耗作为与性能参数同等重要的指标。其最终目标是帮助系统设计人员在便携式应用中得到性能和功率间的最佳平衡。
EEMBC实现此目标的方法是开发基准软件实用工具Energy B ench,它可以在处理器实际工作负载时提供有关能量消耗的真实数据。设计人员可同时使用EnergyBench和EEMBC性能基准,以比较不同处理器在执行一系列标准化应用任务时的能量消耗效率。在使用EnergyBench查看单个设备的功耗时,显然不存在所谓的“典型功率”,因为运行不同的E EM B C基准时,其平均功率有很大的变化。EnergyBench不能反映处理器的典型功率,但通过它可以在特定性能级别上得到某些特定算法或应用的典型功耗值。
使用美国国家仪器公司(National Instruments)的LabVIEW平台和数据采集(DAQ)卡,EEMBC已成功实现 EnergyBench。DAQ卡可提供多个差分测量通道,它们允许同时对多个电源输入进行功耗测量(每次测量都需要捕获电压和电流)和一个触发器通道。任何A R M处理器或使用评估板或自己硬件平台的供应商,只需修改其板级电路以实现电源输入线的可测量和添加分流电阻器。
这些基本条件对于确保结果的一致性非常重要。因为有证据表明随着器件温度的升高,其功耗也会随之升高。
DAQ卡允许且EnergyBench规范也要求测量处理器上的所有power rail。显然地,对于那些引脚数量有限的低端A R M b a s e d器件而言,能测量的power rail很少。具有多电源输入的高端ARM based器件则必须进行多次运行基准,以便捕获完整的处理器功耗数据。EnergyBench的Test Harness中包括多个可执行文件,可同时测量一个、两个或三个power rail。对于使用多个power rail(即内核电源和I/O电源)实现的处理器,可通过两种方法计算基准每次重复测试的功耗。在第一种方法中,EnergyBench使用DAQ卡最多可同时测量三个p owerrail。但使用此方法时,因为所有通道都必须使用相同的采样率,所以可能需要降低D A Q卡的采样率,以便主机能够跟得上采样过程(这是因为同时输入数据过多)。另外,也可以单独测量power rail,每个power rail功耗值的总和即为累积功耗总值。