以上内容主要是SoC的系统架构规划,在完成此阶段的布局后,接着要面对的是如何实现硬件生产的问题。由于SoC的制造相当复杂,尤其是面对多核处理器及庞大的电路闸,因此SoC开发对于EDA工具的依赖极深,而在此类系统级设计(System Level Design)中,电子系统级(Electronic System Level,ESL)正是EDA和IP业者为简化SoC开发而致力推广的设计方法。ESL发展的主要目的就是要解决日益复杂的软硬件协同设计问题。相比较过去,要等到芯片硬件生产出来后才能执行软、硬件的同步验证工作,使得芯片的验证周期拉长。ESL设计方法能通过一个虚拟的软件平台环境,让设计师在IC设计早期阶段即开始进行整体系统架构分析、IP选择与软硬件整合等程序,如此一来,设计师能及早发现SoC软硬件整合上可能出现的问题,大幅提高开发的成功性。
所谓SiP(System in Package),是在基板上组装一块或多块裸片,再加上若干分离式和被动组件的封装设计。相比较,SoC一般需花上18个月,SiP的开发时间能大幅缩短,只需6~9个月的时间即能完工。此外,由于采用封装技术,因此SoC难以整合不同制程、技术的瓶颈,就很适合走SiP的途径,采用Si、GaAs、SiGe等不同制程的芯片可以通过堆栈而封装在一起,进而生产出混合内存、模拟及数字功能的多功能芯片。
一般来说,SiP的成本较SoC为低,对产量规模的要求不高,不过,在制造上仍有其技术门坎。以SiP的开发来说,只要有一个裸晶故障,整个模块就宣告失败,只能弃之不用。也就是说,SiP最终产品的良率是所有堆栈芯片良率的乘积,因此良好裸晶(known good die,KGD)的筛选就成了SiP生产制造过程中最重要的一环,这有赖裸晶测试技术来达成,另一方式则是采用良率更高的、更小型芯片来避免KGD问题。