为了使全光量化编码器向低能耗、光子集成、高速率以及高分辨率的方向发展,我们提出了一种利用半导体光放大器(SOA)中的非线性偏振旋转(NPR)效应来实现全光ADC的方法[7],其原理结构如图8所示。模拟信号被抽样信号抽样之后变成抽样光脉冲,随后被分成N份,输入到由个基于NPR效应的量化编码单元组成的量化编码矩阵。每一个基于效应的量化编码单元由两个级联的偏振开关(PSW)组成,如图8(d)所示。其中PSW1实现预量化编码,由于随着抽样光脉冲强度的增强,PSW1的中更多载流子被消耗,因而造成其输出光功率下降,为了保持强度不同的抽样光脉冲在量化编码单元中所获得的增益一致,PSW1之后级联另外一个偏振开关PSW2,其作用是实现增益的动态补偿。图8(b)所示为量化编码单元的传输函数,图所示为相应的编码输出,预量化编码和增益动态补偿相结合的方式可以很好地实现量化编码。由于SOA的增益恢复时间在皮秒级别,因而基于NPR效应的全光,其转换速率可以达到几百Gs/s(Giga-Samples Per Second)。