① 经典电子系统:不含计算机的纯电子电路系统,例如,测量放大器、电子计数器、温度指示器(由ADC、译码器、LED显示器构成)等,电路的动态特性决定了系统响应能力T的大小。经典电子系统是一个激励-响应系统,从激励到响应的时间完全取决于电子在电路中的运动过程,因而,它具有极短的、相对固定不变的,从激励到响应的时间周期T。在大多数经典电子应用系统中,由电路的动态特性决定了T值的大小。一般情况下,应用系统的T远小于嵌入对象系统的响应(ta)要求,因此,在经典电子应用领域中,应用工程师的头脑中没有“实时性”名词的概念,而对一些极快速响应要求的应用系统,如振动测量系统,它的实时性要求常常反映为电路系统的“频率响应”要求。
② 通用计算机系统:是一个人机交互的激励-运行-响应系统。它的激励-响应时间T表现为电路系统的激励-响应时间tc与软件运行时间ts,而电路系统的激励-响应时间与软件运行时间相比为高阶小量,因而软件运行时间形成了T的主要成份,T=tc+ts≈ts。由于通用计算机系统只使用在人机交互环境中,对象(人)提出的响应时间ta要求,只是一个期望值(尽量快),而这种欲望一方面表现为永无止尽,另一方面又表现出现实的可容忍性。因此,通用计算机系统是一个非实时的电子系统,而快速性成为通用计算机系统发展的永恒主题。
③ 嵌入式系统:由于计算机的嵌入,嵌入式系统也是一个激励-运行-响应的电子系统。但是,它与嵌入对象交互,与嵌入对象的事件过程相关,在与嵌入对象体系交互时,要满足事件交互过程的响应要求。一方面,由于计算机的嵌入,嵌入式应用系统有十分可观的激励-响应时间ts,导致系统实时能力的降低;另一方面,由于嵌入对象体系的多样性、复杂性,不同的对象体系会提出不同的响应时间ta要求。因此,在嵌入式应用系统的具体设计中,必须考虑系统中每一个任务运行时,能否满足ts≤ta的要求,这就是嵌入式系统的实时性问题。
① 本质性实时系统。在这一类应用系统中,系统总体及任务的时限要求ta都不高,常规的软硬件技术都能满足ts≤ta要求。因此,这种应用系统往往不必要考虑系统的实时性设计。例如,一个温度测量系统,由于温度的大惯量特性,满足一定动态误差条件下的温度采集、数据处理、实时显示与打印的响应时间要求ta值很大,不必采取任何特殊的实时设计方法,就能满足ts≤ta要求,因此,它是一个本质性实时系统,
② 通过实时性设计实现的实时系统。这种嵌入式系统在常规设计下,无法满足实时性要求,但通过实时性设计,可以满足实时性要求的系统。例如,一个仓储监测系统,要巡回监测100点的入侵事件。从应用要求的可靠性出发,要求系统对于任何一点入侵事件的响应速度(ta)不得大于1s;而系统对单个入侵事件的采集、处理、输出控制的实际激励-响应时间为0.2s。但在常规的巡回监测方式下,对某一点监测的时间间隔为ts=0.2×100=20s。ts远大于ta,是一个非实时系统。但这个系统的实时性是可以改变的,如果将每个监测点入侵事件的输入激励的查询方式变为中断输入方式,使某一监测点的激励-响应的操作处理时间(ts)降到0.25s以内,满足ts≤ta要求,系统能实时地处理任何一个监测点上入侵事件,而成为一个实时监测系统。
③ 通过实时性设计实现的系统的任务实时。在系统有实时性要求的情况下,系统能满足实时性要求时,系统设计是成功的;但系统不能满足实时性要求时,我们常常会放弃它。例如,卫星发射时,控制大厅墙面上,显示卫星轨迹的卫星运行监测系统,实时地采集卫星运行参数,经处理后,在大屏幕上实时地显示出来,这是一个实时系统。但是,无法实现卫星发射过程中意外事件的实时显示。只能当卫星发射出现意外事故(如运载火箭爆炸)时,出现卫星轨迹的中断。但是,作为弥补,我们可以实现一个意外事故的数据采集系统,高速、实时地采集与存储火箭运行状态参数,并在火箭失事瞬间,将数据发回控制中心,实现意外事故监测系统中,事故数据采集任务的实时性。对于一个冲击振动的谱分析系统,要求有振动波形的采集、时域信号的频谱分析、频谱的图形显示等。由于冲击振动的信号过程时间极短,谱分析处理耗时过多,不可能实现整个系统的实时性(振动频谱的实时显示)要求,这时可以考虑将整个系统的操作过程分成一些独立的部分。例如,将冲击振动谱分析系统的全部操作分成冲击振动信号的波形采集、数据存储与波形信号的谱分析及其后续操作的两个独立部分,实现振动信号采集、存储关键任务的实时性要求。