DIY编程器网

标题: 双膜基片集成波导(SIW)带通滤波器的设计与仿真 [打印本页]

作者: liyf    时间: 2012-1-16 16:57
标题: 双膜基片集成波导(SIW)带通滤波器的设计与仿真

                      摘要:根据多模激励的单腔体谐振器原理以及基片集成波导(SIW)高Q值、低损耗、大功率容量的特点,提出了一种新的SIW方形腔体双膜滤波器的设计方法。该方法通过在SIW腔体两个对称角上切角作为微扰来使简并模式分离并产生耦合,从而形成了中心频率在4.95GHz的窄带带通滤波器,并最终采用直接过渡方式实现了SIW到微带的转换。
  0 引言
  滤波器在无线通信、军事、科技等领域有着广泛的应用。而微波毫米波电路技术的发展,更加要求这些滤波器应具有低插入损耗、结构紧凑、体积小、质量轻、成本低的特点。传统用来做滤波器的矩形波导和微带线已经很难达到这个要求。而基片集成波导(SIW)技术为设计这种滤波器提供了一种很好的选择。
  SIW的双膜谐振器具有一对简并模式,可以通过对谐振器加入微扰单元来使这两个简并模式分离,因此,经过扰动后的谐振器可以看作一个双调谐电路。分离的简并模式产生耦合后,会产生两个极点和一个零点。所以,双膜滤波器在减小尺寸的同时,也增加了阻带衰减。而且还可以实现较窄的百分比带宽。可是,双膜滤波器又有功率损耗高、插入损耗大的缺点。为此,本文提出了一种新型SIW腔体双膜滤波器的设计方法。
  该SIW的大功率容量、低插入损耗特性正好可以对双膜滤波器的固有缺点起到补偿作用。而且输入/输出采用直接过渡的转换结构,也减少了耦合缝隙的损耗。
  l 双膜谐振原理及频率调节
  SIW是一类新型的人工集成波导,它是通过在平面电路的介质层中嵌入两排金属化孔构成的,这两排金属化孔构成了波导的窄壁,图1所示是基片集成波导的结构示意图。这类平面波导不仅容易与微波集成电路(MIC)以及单片微波集成电路(MMIC)集成,而且,SIW还继承了传统矩形波导的品质因数高、辐射损耗小、便于设计等优点。







  对于具有相同谐振频率的两个模式来说,则有如下关系:





  3 仿真结果分析
  仿真可采用电磁仿真商业软件HFSS来完成。通过仿真介质谐振腔滤波器(滤波器源型)可以发现,不同的耦合输入/输出窗口宽度影响着滤波器中心频率的位置,同时也影响耦合强度和带内插入损耗。从图5中看出,随着耦合窗宽度的增大,滤波器的中心频率会上移,耦合减弱,带内插入损耗变大,也就是滤波器的匹配性能变差。






  从以上结果可以看出,通过改变微扰大小可调节滤波器的带宽,而改变耦合输入/输出窗口的宽度则可调节滤波器的中心频率和匹配性能。
  综合以上仿真研究并结合公式(1)、(2),可先计算出SIW的相关尺寸。然后通过HFSS仿真对滤波器性能进行优化,最终所得出的设计电路具体尺寸为h=O.5 mm,εr=10.2,tan d=0.0035,a=b=21.5 mm,d=0.8 mm,s=1.2 mm,cw=2.2 mm,tw=0.72 mm,cw=8.4 mm,ba=2 mm。






  图7所示是本设计的双膜SIW腔体滤波器S参数的响应曲线。从图7中可以看出,采用本设计实现的滤波器的中心频率fo=4.95 GHz,3 dB相对带宽FBW=4.36%,通带内插入损耗为0.9 dB,反射损耗S11小于-22 dB,阻带右侧5.45 GHz处会形成一个传输零点,损耗接近-40 dB。
  4 结束语
  本文应用SIW技术设计了一种具有良好性能的双膜窄带带通滤波器。该滤波器设计原理简单、尺寸小、重量轻、带内插损小、阻带衰减性
  能好;而且采用直接过渡的转换结构,从而减少了耦合输入/输出损耗。故在无线通信、军事、科技等领域有着广泛的应用前景。
            




欢迎光临 DIY编程器网 (http://diybcq.com/) Powered by Discuz! X3.2