DIY编程器网

标题: 基于单片机的密闭容器内压力控制系统设计 [打印本页]

作者: liyf    时间: 2012-1-16 17:19
标题: 基于单片机的密闭容器内压力控制系统设计

                      介绍一种用单片机作为控制器,实现对密闭容器内汽液混合状态下的蒸汽压力和炉壁温度进行控制的方案。该控制器采用模糊控制技术,适用于非线性、时变和时滞系统。实验结果表明,它具有无超调、无静差、鲁棒性强等特点。
  1系统的硬件组成
  总体的硬件结构如图1所示。





  1.3测压电路部分
  测压部分电路如图3所示。本系统采用的压力传感器为Honeywell公司的SCC系列产品,压力传感器起到惠斯登桥的作用,在恒流源驱动时可提供稳定的温度输出。图3中,SCC前边的电路提供恒流源;后边的电路中,U3、U4、U5、U6均为集成运算放大器,利用U3、U4作为跟随器,可以起隔离作用,避免后边电路中的信号对前边电路产生影响。R3为电位器,调节它可以进行压力传感器偏置的校准,调节R7可以改变压力传感器输出的电压的放大倍数。





  MOC3021是双向晶闸管输出型的光电耦合器,其作用是隔离单片机系统和触发外部的双向晶闸管。当单片机输出高电平时,MOC3021的输入端有电流输入,输出端的双向晶闸管导通,触发外部的双向晶闸管KS导通。输出高电平的时间便是触发脉冲的宽度。
  本系统是通过对炉壁加热实现高温高压蒸汽的,该过程是一个非线性、时变的过程,因此采用模糊控制技术来控制本系统。
  为了克服计算量大,耗时多的缺点,模糊控制器在实际应用中采用查表法实现。
  具体做法是:首先通过离线计算,得出一个模糊控制表,然后把控制指标存入到计算机内存。在控制过程中,根据采样得到压力偏差值Pi和温度偏差值Ti,分别乘以量化因子k1、k2,并经量化后得到论域Xi、Yj并由控制表第I行、第J列找到同样以论域形式表现的控制量Uij,乘以相应的比例因子k3得到控制量U,即可用于被控过程,达到预期控制目的。这种模糊控制器组成的系统结构如图5所示。





  (3)精确量到元素整数论域的转化
  根据得到的温度偏差T及压力偏差P的精确量,分别乘以相应的量化因子k1、k2,并将其对应到元素整数论域上的整数点处。
  (4)模糊控制规则表的建立
  模糊控制规则的确定有很多方法:1)根据专家经验或过程控制知识生成规则;2)根据过程的模糊模型生成控制规则;3)根据对手工控制操作的系统观察和测量生成控制规则;4)根据学习算法生成控制规则。本系统中根据专家经验建立模糊控制规则。
  (5)模糊量的精确化
  通过模糊控制规则表得出的输出量是一个模糊量,必须经过精确化处理后才能去控制对象,这个过程称为精确化,也称为反模糊化或模糊判决。通常采用的方法有重心法、中位数法和最大隶属度法。本系统中采用最大隶属度法进行模糊判决。
  最终,可以创建一个查询表,根据量化后的压力偏差值与温度偏差值,直接通过查询此表得出输出的控制量。将该表存入单片机的RAM中,在程序运行中直接对该表进行查询得出Uij,然后通过反模糊化,得出单个采样周期内加热器导通时间,从而实 现对加热量的控制。
  本系统中有两种工作流程供选择,一种是1.2×105Pa(对应蒸汽温度121℃),另一 种是2.0×105Pa(对应蒸汽温度134℃)。测温传感元件RTD放置在容器外壁某位置。 在加热过程中,壁温应限制在某一温度T1以下,因为过高壁温产生的热辐 射会对容器内的被消毒物品产生较大影响。
  在开始工作过程中,程序只对温度进行控制,只要该壁温不超过设定的某一温度,加热元件 便会以最大功率进行加热,当温度超过设定温度时,才进入模糊控制阶段。
  单片机的初始化主要包括对I/O口的输入输出设定、模拟输入通道的选择及定时器的选用等 。
  程序流程如图6。





            




欢迎光临 DIY编程器网 (http://diybcq.com/) Powered by Discuz! X3.2