摘要:本文介绍了一种PWM结合数字PID算法在液体流量变量控制系统中的应用方案,系统以AVR单片机atmega32为核心,以比例电磁阀为控制对象,利用atmega32的PWM功能,采用数字PID调节实现液体流速闭环控制。仿真结果表明采用PWM和数字PID控制液体流速具有良好的动态、稳态性,从而证明了这种设计的合理性和优越性。
关键词:AVR单片机 PWM PID 比例电磁阀
Abstract:Liquid flow variable control using PWM method combined with PID arithmetic is introduced. It controls proportional valve by PWM method based on atmega32 which belongs to AVR microcontroller. The result of emluator indicated that PWM combined with PID arithmetic taked on good dynamic and stability.So the rationality and advantage of the design are proved.
Key words:AVR Microcontroller PWM PID proportional valve
1. 引言
液体流量控制通常采用电磁阀实现,近年来,电磁阀的结构和控制方式发生了很大的变
化,随着计算机进入控制领域,以及新型的电力电子功率元器件的不断出现,使采用全控制的开关功率元件进行脉宽调制(pulse width modulation ,简称PWM)控制方式得到了广泛的应用。这种控制方式很容易在单片机中实现,从而为电磁阀的控制数字化提供了契机。
将偏差的比例(proportion)、积分(integral)、微分(differential)通过线性组合构成控制量,用这一控制量对被控对象进行控制,这样的控制器称PID控制器。PID控制器最早出现在模拟控制系统中,传统的模拟PID控制器是通过硬件(电子元件、气动和液压元件)来实现它的功能。随着计算机的出现,把它移植到计算机控制系统中来,将原来的硬件实现的功能用软件来代替,因此称作数字PID控制器,所形成的一整套算法则称作数字PID算法。数字PID控制器与模拟PID控制器相比,具有非常强的灵活性,可以根据试验和经验在线调整参数,因此可以得到更好的控制性能。
2. 液体流量控制系统组成
本系统采用AVR系列的atmega32单片机为核心,通过设置atmega32的PWM控制寄存器产生脉宽可调的PWM波,对比例电磁阀的输入电压进行调制,从而实现了对液体流量的变量控制。单片机统过涡轮流量计采集实际流量信号,根据该信号在其内部采用数字PID算法对PWM控制寄存器的值进行修改,从而达到精确的变量控制。为了防止外界干扰信号进入控制系统,单片机和涡轮之间采用光藕隔离,提高了系统的可靠性。温度传感器和压力传感器用来做监测喷杆中的压力和温度。通过4*4键盘和128*64液晶模块实现人机对话,便于用户操作。系统原理图如图2-1所示: