DIY编程器网

 找回密码
 注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 142|回复: 0
打印 上一主题 下一主题

基于小波变换微弱生命信号提取的研究方案

[复制链接]
跳转到指定楼层
楼主
发表于 2012-1-16 17:24:18 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

                    ??? 1 引言
  生命信号由于受到人体等诸多因素的影响,具有信号弱、噪声强、频率范围较低和随机性强的特点,用传统的傅里叶变换提取具有局限性。而具有多分辨分析特性的小波变换,可利用时频平面上不同位置的不同分辨率,有效地从非平稳信号中提取瞬态信息,可有效地提取信号的波形。
  2 Mallat算法
  小波的多分辨分析理论研究表明,满足一定正则条件的滤波器组可以迭代计算出小波,Mallat 提出了双尺度方程以及塔式分解算法,这些成果将滤波器组和小波紧密联系在一起,使得滤波器组与小波理论及设计有了非常紧密的联系。众学者开始重视利用滤波器组设计小波,以及滤波器组自身理论的研究。
  小波变换的多分辨分析MRA(Multi-ResolutiON-Analysis)特性,定义空间L2(R)中的一列子空间{Vj}j∈z,称为L2(R)的一个多分辨分析(MRA),该序列若满足下列条件:



  Mallat根据多分辨分析提出小波变换分解和重构快速算法-Mallat算法。设({Vm;m∈Z};φ(t))是一个正交MRA,则存在{hk}∈ι2,使双尺度方程:
  



  方程(1)成立,并利用式(1)可得到尺度函数φ(x)构造函数:



  ψ(x)的伸缩、平移构成L2(R)正交基,其中gk=(-1)h1-k。进一步,当



  主要包含3个方面的内容:
  (1)集合ψ0={φ(x-k);k∈Z}构成W0的标准正交基,因此

可以保证

从而保证Wj的基向量,并可表示L2(R)中的任意函数。
  (3)Wj⊥Wj',j≠j',保证在彼此正交的前提下当且仅当表示信息。
  多分辨分析理论为信号局部分析提供相当直观的框架,这一点在非平稳信号中的作用尤为重要,代表信号的主要轮廓;而快变部分对应于信号的高频信息,表示信号的细节,因此,Mallat算法的基本思想可以归纳如下:
  设Hjf为能量有限的信号f∈L2(R)在分辨率2j下的近似,则Hjf可以进一步分解为f在分辨率2j-1下的近似Hj-1f,以及位于分辨率2j-1与2j之间的细节Dj-1f之和,其分解和重构过程如图1和图2所示。






  3 小波阈值去噪法
  一般含噪的一维信号的模型可表示为:
  s(k)=f(k)+εe(k),k=0,1,…n-1 (3)
  式中,s(k)为含噪信号,f(k)为有用信号,e(k})为噪声信号。
  利用小波检测微弱生命信号的实质是提取强噪声背景下的生命信号,这个过程即去噪,在小波去噪的方法中比较常用的是阈值去噪法。
  小波阈值去噪可分为3部分:
  (1)信号的小波分解选择一个小波函数对信号进行分解计算。
  (2)小波分解高频系数的阂值量化 对各分解尺度下的高频系数选择一个阈值进行阈值量化处理。
  (3)小波重构 根据小波分解的最底层低频系数和各层高频系数进行小波重构。
  最关键的是阈值的选择以及阈值的量化,该步骤完成的好坏决定信号消噪的质量。在阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数模的不同处理策略以及不同估计方法。设ω是原始小波系数,η(ω)表示阈值化后的小波系数,T是阈值,I(x)为示性函数。



  常见阈值函数有:(a)硬阈值函数(图3a),η(ω=ωI(|ω|>T);(b)软阈值函数(图3b),η(ω)=(ω-sgn(ω)T)I(|ω|>T)。

            
                     



  小波阈值去噪方法除阈值函数的选取外,另一个关键因素是阈值估计。如果阈值太小,去噪后的信号仍然有噪声存在;阈值太大,重要的信号特征又被过滤掉,引起偏差。常见的阈值估计方法有Visushrik阈值、SUREShrink阈值、GCV阈值等。设原始信号小波系数估计通过软阈值函数萎缩得到,即
  



  阈值的选择可通过下面的风险函数定义:



  由于小波变换的正交性,风险函数可以写成:



  可以证明,当V服从Guass分布时,有下面的等式成立



  式中,P(|Yi|>t)服从二项分布,其概率可用|Yi|>t出现的频率近似,可得到风险函数的表达式如下:



  式中,I是示性函数,^表示两数取小。
  则最佳闽值选择可以通过最小化风险函数得到,即

,对于最佳阈值的选择可以在一个有限的范同内,即t*∈{Y1,Y2,…,YN}。在实际应用中,SUREShrink阈值去噪法能获得较为满意的去噪效果,这是一种误差较低的阈值去噪方法。
  4 小波去噪的MATLAB仿真
  一般检测到的微弱生命信号的背景强噪声主要是工频干扰信号,因此采用正弦信号模拟人体心跳信号频率为0.7 Hz、幅度是1,模拟的工频干扰信号频率为50 Hz、幅度是心跳信号的10倍,和Matlab提供的噪声noissin信号叠加,可近似组成强噪声背景下的生命信号,采用db3小波进行信号分解,并对信号进行SUREShrink阈值估计,并采用heursure函数实现。
  MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。
  将信号映射到小波域,根据噪声和噪声的小波系数在不同尺度上具有不同的性质和机理,对含噪信号的小波系数进行处理。实质是减少剔除噪声产生的小波系数,最大限度的保留真实信号的系数。
  叠加信号去噪仿真图如图4所示,叠加信号经过小波阈值去噪法去噪后,可得到较好的生命信号,小波分解和重构的细节,如图5和图6所示。根据Mallat算法的基本思想,高频信号和低频信号分别可以从图中反映出来,其中a1和d1分别反映模拟生命信号的正弦信号,和强噪声干扰的工频信号,这就说明对微弱生命信号的提取小波可以取得很好的效果,由于这里所使用的是模拟的生命信号,在实际应用时还应进行改进。









  5 结束语
  生命信号由于本身的特点,传统的傅里叶变换对其消噪和提取显得无能为力,因为傅里叶变换对信号的分析只是在频域中进行,不能反映信号某一点的变化情况,而小波变换可以对信号在时频两域进行分析,很适合探测信号的瞬时状态,对微弱生命信号可以进行有效去噪和提取。通过仿真表明,小波变换很适合微弱生命信号的检测,可以在这一领域发挥重要作用。
            
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友 微信微信
收藏收藏 分享分享 支持支持 反对反对
您需要登录后才可以回帖 登录 | 注册

本版积分规则

小黑屋|文字版|手机版|DIY编程器网 ( 桂ICP备14005565号-1 )

GMT+8, 2026-1-2 21:55 , 耗时 0.099627 秒, 18 个查询请求 , Gzip 开启.

各位嘉宾言论仅代表个人观点,非属DIY编程器网立场。

桂公网安备 45031202000115号

DIY编程器群(超员):41210778 DIY编程器

DIY编程器群1(满员):3044634 DIY编程器1

diy编程器群2:551025008 diy编程器群2

QQ:28000622;Email:libyoufer@sina.com

本站由桂林市临桂区技兴电子商务经营部独家赞助。旨在技术交流,请自觉遵守国家法律法规,一旦发现将做封号删号处理。

快速回复 返回顶部 返回列表