DIY编程器网

 找回密码
 注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 1104|回复: 0
打印 上一主题 下一主题

[待整理] 数据库解析:数据离散化和概念分层

[复制链接]
跳转到指定楼层
楼主
发表于 2015-4-26 22:51:38 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
通过将属性值域划分为区间,数据离散化技术可以用来减少给定连续属性值的个数。区间的标记可以替代实际的数据值。用少数区间标记替换连续属性的数值,从而减少和简化了 原来的数据。这导致挖掘结果的简洁、易于使用的、知识层面的表示。离散化技术可以根据如何进行离散化加以分类,如根据是否使用类信息或根据进行方向(即自顶向下或自底向上)分类。如果离散化过程使用类信息,则称它为监督离散化(supervised iscretization);否则是非监督的(unsupervised)。

         如果首先找出一点或几个点(称作分裂点或割点)来划分整个属性区间,然后在结果区间上递归地重复这一过程,则称它为自顶向下离散化或分裂。自底向上离散化或合并正好相反,首先将所有的连续值看作可能的分裂点,通过合并相邻域的值形成区间,然后递归地应用这一过程于结果区间。可以对一个属性递归地进行离散化,产生属性值的分层或多分辨率划分,称作概念分层。概念分层对于多个抽象层的挖掘是有用的。   对于给定的数值属性,概念分层定义了该属性的一个离散化。通过收集较高层的概念(如青年、中年或老年)并用它们替换较低层的概念(如年龄的数值),概念分层可以用来归约数据。通过这种数据泛化,尽管细节丢失了,但是泛化后的数据更有意义、更容易解释。
  这有助于通常需要的多种挖掘任务的数据挖掘结果的一致表示。此外,与对大型未泛化的数据集挖掘相比,对归约的数据进行挖掘所需的I/O操作更少,并且更有效。正因为如此,离散化技术和概念分层作为预处理步骤,在数据挖掘之前而不是在挖掘过程进行。属性price的概念分层例子在图2-22给出。对于同一个属性可以定义多个概念分层,以适合不同用户的需要。


  属性price的一个概念分层,其中区间($X.$Y]表示从$X(不包括)到$Y(包括)的区间对于用户或领域专家,人工地定义概念分层可能是一项令人乏味、耗时的任务。幸而,可以使用一些离散化方法来自动地产生或动态地提炼数值属性的概念分层。此外,许多分类属性的分层结构蕴涵在数据库模式中,可以在模式定义级自动地定义.
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友 微信微信
收藏收藏 分享分享 支持支持 反对反对
您需要登录后才可以回帖 登录 | 注册

本版积分规则

小黑屋|文字版|手机版|DIY编程器网 ( 桂ICP备14005565号-1 )

GMT+8, 2024-11-16 02:55 , 耗时 0.108475 秒, 19 个查询请求 , Gzip 开启.

各位嘉宾言论仅代表个人观点,非属DIY编程器网立场。

桂公网安备 45031202000115号

DIY编程器群(超员):41210778 DIY编程器

DIY编程器群1(满员):3044634 DIY编程器1

diy编程器群2:551025008 diy编程器群2

QQ:28000622;Email:libyoufer@sina.com

本站由桂林市临桂区技兴电子商务经营部独家赞助。旨在技术交流,请自觉遵守国家法律法规,一旦发现将做封号删号处理。

快速回复 返回顶部 返回列表