DIY编程器网

 找回密码
 注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 137|回复: 0
打印 上一主题 下一主题

TI 700-mW低电压音频功率放大器TPA711的特性及其应用

[复制链接]
跳转到指定楼层
楼主
发表于 2012-1-21 23:45:48 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
一、简介:TPA711集成电路是TI专为内置扬声器,外接耳机,为低电压场合应用而开发的桥式(bTL)或单端(SE)音频功率放大器。在3.3V工作电压下,它可在音频范围内,bTL (8Ω负载)工作模式下,输出总谐波失真与噪声值小于0.6%,250mW的连续功率。尽管TPA711具有20kHz以上的工作特性,但其在更窄频段的应用场合,如无线通信场合,效果最佳。bTL电路在大多数应用场合,输出端可以省掉耦合电容器,这点对小型电池的供电设备特别重要。当需要驱动耳机时,TPA711不寻常的特点是可使放大器快速实现从bTL到SE模式切换。这样,省掉了使用机械开关或附属连接装置。对功率敏感的应用场合,TPA711可以在关断模式下工作,借助于专用消噪声电路消除扬声器的噪声。TPA711有8脚SOIC和MSOP两种表面安装的封装形式,它们可以减少50%的电路板面积和40%的高度。图1、图2分别表示其外形图和内部工作框图。表1表示其引脚功能。
二、工作特性和外形图1. 工作电压范围3.3V~5V;2. 额定工作电压范围2.5V~5.5V;3. 输出功率;① 700mV,当VDD=5V,bTL,RL=8Ω② 85mV,当VDD=5V,bE,RL=32Ω③ 250mV,当VDD=3.3V,bTL,RL=8Ω④ 37mV,当VDD=3.3V,SE,RL=32Ω4. 关断控制① IDD=7μA,当3.3V;② IDD=50μA,当5V;5.bTL/SE转换控制;6.热保护和短路保护;7.集成消噪声电器;8.表面安装封装;① SOIC② PowerPADTMMSOp外形如图1所示。

图1 D或DGN封装顶视图D-小外形塑封(SOIC)DGN-有导热焊盘的小外形塑封(MSOP)三、工作框图及引脚功能:图2示出的是工作框图,表1列出了引脚功能。

图2 工 作 框 图表1 引 脚 功 能引 脚输入/输出功 能名 称引脚号旁 路2输入当用作音频放大时,这个端子应加一个0.1μF-2.2μf的电容地7输入 接地音频输入4输入音频信号输入SE/bTL转换3输入当SE/bTL为低时,TPA711工作于bTL模式,反之,SE模式关 断1输入这个端子为高时,(IDD=7μA)器件关断电 源6输入电源电压端V0+5输出SE/bTL的输出正端V0-8输出SE/bTL的输出负端四、参数测试电路:图3、4分别表示bTL、SE模式测试电路图,用以测量电路的参数。

图3 bTL模式测试电路

图4 SE模式测试电路
                          
                       
                          
                                五、典型应用
1. 桥式输出与单端输出(bTL/SE)模式:图5给出了工作于bTL模式下的音频功放电路图。TPA711内有两个线性功放来驱动负载。它们工作于差动方式。这样相对于参考地电位,它的输出功率较大。

图5 桥式电路图输出功率可由下式计算:



(1)在便携式音频设备中,电路供电电压为3.3V。在8Ω负载单端输出62.5mW的情况下,桥式可输出4×62.5=250mW。即有6db的功增加。在增加功率输出的同时,对频率响应也应加以注意。 在图6 所示的SE(单端)输出情况下,接至负载的隔直耦合电容Cc是必不可少的,该电容器的容量比较大(3.3μF~1000μF),重量也较大,占印刷电路板的面积大,价格较贵。这个电容对系统的低频响应影响很大。这是由于这个电容和负载间形成的高通滤波而造成的。角频率可由下式计算:

(2)

图6 单端电路和频率响应图 例如,在8Ω负载,输出耦合电容为68μF时,将对293Hz以下的频率加以衰减。而在bTL模式下,抵消了直流失调电压,省掉了输出输出耦合电容,低频特性只取决于输出回路和扬声器特性。同时电路体积和造价也相应降低。 2. bTL放大器效率:线性放大器的效率低,这主要是因于输出功率管上的管压降。首先是功率输出管上的直流压降和输出功率成反比,其次是由于正弦波本身的原因。管压降可由VDD减去输出电压的RMS(均方根值)值得到,管压降乘以电源电流的RMS,即可算出管耗。虽然流过bTL,SE功率负载的电压,电流都是正弦波,但是电源电流的波形是很不相同的。在SE模式下的电流波形是半波,而在bTL模式下是全波,这就意味着它们的波形因数(因子)不同,参见图7。利用下面的公式可以计算放大器的效率:

(3)式中:



图7 bTL放大器的电压、电流波形







(4) 表2给出了输出功率不同条件下计算得到的效率。当输出功率低时,电路效率也低,随着输出功率的增加,电路的功率也增加。在正常工作范围内,内部功耗几乎为恒定值。从方程(4)可以看出,电源电压VDD下降,电路效率增加。表2 3.3V 8Ω bTL模制中效率与输出功率的关系输出功率(W)效率(%)峰值到峰值的电压内部功耗0.12533.61.410.260.2547.62.000.290.37558.32.450.28*高的峰值电压值引起总谐波失真增大。 3.典型应用电路图8是一个典型便携式音频放大电路,电路电压增益为-10。

图8 TPA711应用电路下面讨论图8中电路元器件的选用。 4.元件选用:增益设定电阻RF,R1。在bTL工作模式下,TPA711的增益由RF,R1由公式5决定:

(5) 公式(5)中系数-2是由于bTL电路在输出端桥式电路输出对称波形幅度较SE大一倍的原因。假定TPA711是一个MOS放大器。输入阻抗很高,那么输入电流就很小,电路噪声随RF的增加而增加。同时,RF的取值应有一个范围,以确保电路正常工作。假定放大器的反相输出端等效阻抗为5~20kΩ,则电路等效阻抗可由等式(6)决定。

(6)
                          
                       
                          
                                举例,假定R1=10 kΩ,RF=50 kΩ,则在bTL模式下电路电压效益为-10,反相端输入等效阻抗为8.3 kΩ,这个取值在推荐范围内。对于高性能应用场合,R1,RF选用金属膜电阻,这样可降低电路噪声。当RF大于50 kΩ时,由于RF和MOS输入回路容抗的作用,会使电路工作不稳定。这时可在RF两端并一个5pF的电容。这样RF,CF可形成一个低通滤波回路,回路的截止效率可由等式(7)决定。

(7)例如,当RF=100 kΩ,CF=5pF时,fco=318kHz,这足以超过音频范围。5.输入电容C1:在实际应用中,C1可使TPA711的偏置电压稳定,这对确保电路稳定工作很重要。在本例中,C1,R1形成一个高通滤波回路,其角频率由方程(8)决定。

(8)电容C1的取值对稳定电路偏置电压影响较大。当R1=10 kΩ时,为得到低至40Hz的平坦响应特性,可由等式(9)决定C1取值。

(9)在本例中,C1为0.40μF,实际应用中C1取值范围为0.40μF~1μF。C1取值还要考虑的影响是通过R1,RF的漏电流,这个漏电流会在电路输出端产生一个失调电压,从而影响输出功率,这点在高增益场合下的影响更明显,所以实用中C1应选用钽电容或瓷片电容。当使用有极性电容时,正极应接在电路的输入端,这是因为输入端的直流电位为VDD/2的原因,它比信号源的直流电压要高,电容的极性要正确,这点在使用中很重要。6.电源去耦电容CS:TPA711是一个高性能的CMOS音频放大器,为了使电路的总谐波失真尽可能低,则要求电源的去耦要好。电源的去耦还可以消除由于电路的扬声器引线过长而引入的振荡。比较好的去耦是采用不同类型的两个电容并联,小容量,低等效串联电阻(ESR)的小容量电容用来吸收高频噪声干扰,如电火花,在引线上数字杂乱干扰躁声等。而对滤除低频噪声信号,应选用铝电解电容器,容量应大于10μF。7.中路旁通电容Cb:电容Cb有几个作用:1) 在电路启动或由关断模式的再启动情况下,Cb决定电路的启动速率;2) 可降低因输出驱动信号耦合引起电源产生的噪声信号;3) 可减少电路启动的扑扑声。为使电路启动扑扑声尽量小,Cb可由方程(10)决定:

(10)作为一个例子,取Cb=2.2μF,C1=0.47μF,CF=50 kΩ,R1=10 kΩ,将这些值人入方程(10)得出:18.2≤35.5可见满足方程(10)。为使电路总谐波失真小,Cb应该用等效串联电阻ESR小的瓷片电容或钽电容。8.单端工作状态在单端(SE)工作状态下(见图9),负载由VO+驱载。在单端模式下,增益由等式(11)的RF,R1决定。

(11)在SE模式下,输出耦合电容的选择也很重要,CC对电路其它元件的取值也有影响。它应满足以下公式(12)。

(12)9.输出耦合电容CC:在典型的单电源单端(SE)情况下,CC用来在电路输出端与负载间隔直,电路的高通频率由等式(13)决定。

(13)电容CC的缺点是影响电路频响的下限值,从而影响电路的低频响应。为使下限频率足够低,CC取值应足够大。一般对4Ω,8Ω,32Ω,47Ω的负载,CC应选用330μF以上。表3给出了不同的取值情况下,电路的频响特性。
表3 单端输入时负载阻抗与电路低频特性间的关系RLCC最低频率响应8330μF60Hz32330μF15Hz47000Ω330μF0.01Hz如表3所示,8Ω负载比较合适,耳机频响特性也很好。10.SE/bTL工作模式:TPA711可以很方便地在SE和bTL工作模式下实现转换,这是它最重要的特性,这对电路负载既有扬声器又有耳机的场合下特别有用。当控制端SE/bTL为L时,电路工作于bTL模式,当SE/bTL为H时,电路工作于SE模式。SE/bTL的控制输入可以是一个TTL逻辑电源,更常用的是采用图9所示的电阻分压网络。

图9 TPA711电阻分压网络电路 当耳机未插入时,耳机开关闭合,由100 kΩ电阻分压网络提供一个低电平SE/bTL端子,当耳机插入时,电阻1 kΩ切断,分压网络为SE/bTL端子提供一个高电平,从而完成SE/bTL工作模式转换。 11.采用低等效串联电阻电容:本电路所有电容都应采用低等效串联电阻的电容,这对提高电路性能很有意义。 12.5V和3.3V工作:TPA711可以在3.3V~5V范围内正常工作。提供电压不同,输出功率不同。每个TPA711的动态范围为(VDD-1)伏,而对3.3V工作电压下,当VO(PP)=2.3V时,电路出现限幅,对5V供电,VO(PP)=4V时,电路出现限幅。 13.动态范围和热设计:在正常工作状态下,线性放大器会产生很大的功耗,对典型的CD需要12db~15db的动态范围。对TPA711在5V供电电压,负载为8Ω的情况下,它可以输出700mW的峰值功率。现将功率值转变为db值。有:Pdb=101gPw=101g700mW=-1.5db可得到无失真条件下的电路动态范围-1.5db-15db=-16.5(15db的动态范围)-1.5db-12db=-13.5(12db的动态范围)-1.5db-9db=-10.5(9db的动态范围)-1.5db-6db=-7.5(6db的动态范围)-1.5db-3db=-4.5(3db的动态范围)再次将分贝值转换为功率值:Pw=10PDb/10=22mW(15db动态范围)=44mW(12db动态范围)=88mW(9db动态范围)=175mW(6db动态范围)=350mW(3db动态范围)表4给出了TPA711在额定功率5V,8Ω,bTL模式下的峰值输出功率,平均输出功率,功耗,最高环境温度间的关系。表4表明,TPA711可以在DGN封装条件下不使用散热片,在环境温度高达110℃时输出700Mw。D封装下环境温度34℃,不使用散热片,输出功率700Mw。表 4峰值输出功率(mW)平均输出功率功耗(mW)D封装(SOIC)DGW封装(MSOP)最高环境温度最高环境温度700700Mw67534℃110℃700350mW(3Db)59547℃115℃700176mW(6db)47568℃122℃70088mW(9db)35089℃125℃70044mW(12db)225111℃125℃
                          
                       
                          
                               
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友 微信微信
收藏收藏 分享分享 支持支持 反对反对
您需要登录后才可以回帖 登录 | 注册

本版积分规则

小黑屋|文字版|手机版|DIY编程器网 ( 桂ICP备14005565号-1 )

GMT+8, 2025-11-25 06:05 , 耗时 0.095519 秒, 19 个查询请求 , Gzip 开启.

各位嘉宾言论仅代表个人观点,非属DIY编程器网立场。

桂公网安备 45031202000115号

DIY编程器群(超员):41210778 DIY编程器

DIY编程器群1(满员):3044634 DIY编程器1

diy编程器群2:551025008 diy编程器群2

QQ:28000622;Email:libyoufer@sina.com

本站由桂林市临桂区技兴电子商务经营部独家赞助。旨在技术交流,请自觉遵守国家法律法规,一旦发现将做封号删号处理。

快速回复 返回顶部 返回列表